Arsenic Defined

OWLS™ Water Education: Arsenic Defined

OWLS Water Lab
OWLS™ STEM Education Research Resources are for students of all ages and for assisting teachers and parents in the education of our children on the importance of clean healthy drinking water. The research material posted below is for educational purposes only.   LTW™ endorses the following as OWLS™ STEM Educational Research Resources.


Courtesy of Phys.org June 1, 2012

Arsenic is one of the most common elements on Earth and is present as arsenic salts in all water. The World Health Organization sets the safe level for arsenic in drinking water at 10 parts per billion. From the Himalayas to Southeast Asia, arsenic levels in drinking water can be more than 10 times that amount, yet the wells are rarely tested. The problem has been termed “the largest mass poisoning of a population in history”, with calls for a reinvigoration of moribund well-testing campaigns.

For instance, of the more than 400,000 shallow tube wells in Nepal, it is estimated that nearly 10% of them are contaminated with arsenic, which can cause a variety of health problems, including skin lesions, diseases of the blood vessels of the hands and feet, and cancer of the skin, bladder, kidney and lung.

Several arsenic testing kits are available on the market, but they require expensive machinery to read the outputs, and almost all of them use mercury bromide, which is extremely toxic.

Dr. Jim Ajioka from the Department of Pathology, along with Dr. Jim Haseloff from the Department of Plant Sciences and colleagues from the University of Edinburgh, has designed a whole-cell arsenic biosensor that is cheap, non-toxic and easy to use.

Some species of bacteria are natural arsenic biosensors: in the presence of less than 10 parts per billion of arsenic, they initiate the production of enzymes and an efflux pump for the detoxification and removal of arsenic. For the sensor, the team will take the genes that detect arsenic and combine them with bacterial genes that produce coloured pigments. The modified bacteria will turn green when arsenic levels are safe, and purple when arsenic levels are unsafe. The test uses a harmless strain of the soil-dwelling bacterium Bacillus subtilis, which poses no threat to human health or the environment.

The extremely simple visual output combined with the low cost (estimated at around $0.50 per test) and the lack of need for any expensive monitoring equipment make the whole-cell arsenic biosensor ideal for use in rural areas where contamination of drinking water is widespread.

With the assistance of Cambridge Enterprise, the University’s commercialisation arm, the team has received a translational grant from the Wellcome Trust. It is anticipated that a functioning device can be built within the next 18–24 months, with field testing to follow.

Provided by University of Cambridge

Arsenic

Arsenic (pronounced /ˈɑrsnɪk/; also /ɑrˈsɛnɪk/ when attributive) is the chemical element that has the symbol As and atomic number 33. Arsenic was first documented by Albertus Magnus in 1250. Its atomic mass is 74.92. Arsenic is a notoriously poisonous metalloid with many allotropic forms, including a yellow (molecular non-metallic) and several black and grey forms (metalloids).

Three metalloidal forms of arsenic, each with a different crystal structure, are found free in nature (the minerals arsenic sensu stricto and the much rarer arsenolamprite and pararsenolamprite). However, it is more commonly found as arsenide and in arsenate compounds, several hundred of which are known. Arsenic and its compounds are used as pesticides, herbicides, insecticides and in various alloys.

For more information about Arsenic, read the full article at Wikipedia.
This text uses material from Wikipedia and is available under the GNU Free Documentation License.

New test to detect arsenic contamination in drinking water

An economical and easy-to-use biosensor could reduce the chance of being poisoned by arsenic – a common contaminant of wells in parts of Asia.

Chemistry / Biochemistry

Tracing arsenic threat to groundwater

In the driest inhabited continent on earth, underground water accounts for a large portion of Australia’s most precious resource – freshwater.

Space & Earth / Environment

 

Chemicals matching “arsenic”

FAIR USE NOTICE: Foregoing Videos/Articles may contain copyrighted© material the use of which may not have been specifically authorized by the copyright owner. Such material is made available herein to educate and advance research and understanding of ecological, scientific, environmental, moral, ethical, and social issues, etc. It is believed that this constitutes a ‘fair use’ of any such copyrighted material as provided for in section § 107 . Limitations on exclusive rights: Fair use, US Copyright Law. In accordance with Title 17 U.S.C. Section 107, this material is distributed with proper author credit, without change to authors work, without profit by Love The Water™ as educational and research information only to those who have expressed a general interest in receiving similar information for research, teaching and educational purposes. Proper citation of author and full credit to original publishing is noted and linked to original and Love The Water™ does not take credit for the authors work and states that the article/video is courtesy of the linked author as educational material only.